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Transformers and Self-Attention

“Attention Is All You Need”

* Q (Query), K(Key), V (Value)
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Vaswani et al (2018) Attention is all you need. Proc. of NeurlPS. The Transformer- model architecture [1]



ReAct Agents

/F

/ Actions ) Actions

TN [ 77N N Y
Reasoning easenind e | e
LM LM Env ) Traces LM Env
Traces

N N SN N
Observations Observations

Reason Dnly (e.g. Chain-of-thought) Act Only (eq. SayCan,W_e_bGﬂPI] ReAct {Reason + Act)

Combining large language models’ reasoning (chain-of-thought prompting) and acting capabilities [2]

Yao, S et al (2023). React: Synergizing reasoning and acting in language models. ICLR 2023.



Multi-agent Frameworks — Camel Al
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Specified Task: Develop
a trading bot with a

sentiment analysis tool
that can monitor

social media platforms
for positive or negative
comments about a
particular stock, and
execute trades based on
sentiment analysis
results

Role Playing Session

Instruction: Install the necessary Python libraries for
sentiment analysis and stock trading.
Input: None

Solution: To install the necessary Python libraries for
sentiment analysis and stock trading, we can use pip,
the package installer for Python. Here are the libraries
we need to install:

1. tweepy - for accessing the Twitter API
2. textblob - for sentiment analysis
3. yfinance - for accessing Yahoo Finance API

To install these libraries, open the command prompt or
and enter the Q0 3

pip install tweepy
pip install textblob
pip install yfinance

Next request.

Instruction: Import the necessary libraries in Python.
Input: None

Solution: Here's the code to import these libraries:
import tweepy

from textblob import TextBlob

import pandas as pd

import numpy as np

import yfinance as yf

Next request.

CAMEL Role-Playing Framework. [3]

Li, G et al (2023). CAMEL: Communicative Agents for "Mind" Exploration of Large Language

Model Society. NeurlPS 2023.



Agentic Battery Energy Storage Management
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System Message Role: "You are a power
system dispatch optimization expert"
overseeing real-time adjustments.

Day-Ahead Plan: Generate 24-hour
forecasts for load, wind, and PV.

Rolling Optimization: Execute a real-time
rolling horizon optimization using fixed
window intervals

Parameter Adjustment: Dynamically
update settings like objective function
and/or constraints.



Case Study
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Battery Energy Storage: 400 kWh (60 kW charge/discharge),
initialized at 200 kWh, operating between 20% and 85%
SOC.

Integrated renewable generation from wind and
photovoltaic (PV) systems, 250 kW, respectively.

Grid connection featuring specific electricity purchase and
sale prices that influence the dispatch cost.

A day-ahead optimisation generates a 24-hour plan and
then there is a 96 fifteen-minute intervals rolling intraday
optimisation, serving as the reference for real-time
operations.
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Case Study Step 1
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Case Study
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Prompts and Input Information ,

System Message:

. L r ~\ You are a power system dispatch optimization expert.
Test 0 — Fixed Penalty Coefficient System Message: The system consists of:
. _ . You are a power system dispatch optimization expert. - Battery storage (400 kWh; initial 200 kWh; 20%-85%
Intraday Rolling Optimization The system consists of: 50C; 60 kW)
. . . . . SOC; 60 kW _Gri i ith oi i
Baseline intraday rolling optimization N and ) e Grid connection with given buy/sell prices
. . - Wind and PV generation forecasts - Day-ahead plan (24h) expanded to 96 pts
that uses a fixed penalty coefficient - Grid connection with given buy/sell prices
(e.g., 0.01). The day-ahead 24-hour - Day-ahead plan (24h) expanded to 96 pts Task: Based on current performance metrics,
plan is expanded to 96 intervals, and a Tack: Adi A I hcient based recomm.end t'ermlnal battery SQC constraint for the
moving 4-hour window is used to | metrics. (Response in JSON) )
minimise deviations between actual ) . (Rolling Prompts: )
operations and the reference Rolling Prompts: Current Window Metrics:
schedule. Current Window Metrics: - Start Time index t
- Start Time index t - Current battery SOC: e.g., 200 kWh
- Current penalty (e.g., 0.01) - Day ahead terminal SOC target for t
Upcoming Forecast: Upcoming Forecast:
- Ref. net grid exchange for next 16 intervals - Ref. net grid exchange for next 16 intervals
- Forecasted load - Forecasted load
- Forecasted renewable generation - Forecasted renewable generation
- Past actual vs. Ref. - Past actual vs. Ref.
OpenAI GPT-40. - Historical penalty - Historical penalty
- Average deviation ) - Average deviation )

Test 1 - Dynamic Penalty Coefficient Test 2 - Terminal State-of-Charge (SOC)
Adjustment Using LLM Assistance Constraint Adjustment with LLM Guidance
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Inferences — Test 1 Dynamic Penalty Adjustment
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Battery Energy Target (kWh)

Inferences - Test 2 SOC Constraint Adjustment
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Cost Performance Summary

* Day-Ahead Cost: £7907
The reference day-ahead plan.

» Test 0 (Fixed Penalty): 7777
Baseline - Rolling optimisation with a fixed penalty yields a cost reduction compared to day-ahead.

* Test 1 (Dynamic Penalty Adjustment): 7777
Dynamic penalty adjustment shows similar performance to the fixed penalty approach.

* Test 2 (SOC Constraint Adjustment): 7718
Incorporating terminal battery SOC constraint adjustments results in the lowest cost improvement.



Concluding Remarks

* Focus on Strategic Objectives or Constraint Management?: Intuitively, adjusting objectives based
on evolving goals will make the system operation effective. However, constraint management performs
better in the shown case study.

» Al Agents Learn and Adapt: Leveraging techniques like supervised fine-tuning (SFT) or reinforcement
learning (RL) enables Al agents to continuously improve decision-making by learning from past
experience.

» Optimisation Is Just a Tool, Not the Destination: True energy management success lies in intelligent,
adaptive decision-making — optimisation supports it, but does not replace it.
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